China Standard Car Carrier Trailer Heavy Duty Shaft and Electr Brake Parts Truck Disc Brake Axle dexter axle

Product Description

Product Parameters

If you have any questions, you can chat with me
Technical Parameter

Model

Max. Capacity
(T)

Total Length
(mm)

Wheel Track
(mm)

Plate spring spacing
(mm)

Brake
(mm)

Axle Tube
(mm)

Studs(mm)

P.C.D(mm)

DRGA10

10

~2215

1820

≥990

420*125

150*150

10*M22*1.5

287.75

DRGA13

13

~2115

1840

≥940

420*220

150*150

10*M27*1.5

287.75

DRGA13

13

~2185

1840

≥930

420*180

150*150

10*M20*1.5

287.75

DRGA13

13

~2185

1840

≥930

420*180

O127

10*M22*1.5

335

DRGA14

14

~2185

1850

≥930

420*220

150*150

10*M22*1.5

335

DRGA15

15

~2185

1850

≥940

420*180

O127

10*M22*1.5

335

DRGA15

15

~2185

1850

≥940

420*180

150*150

10*M22*1.5

335

DRGA16

16

~2185

1850

≥940

420*220

O127

10*M22*1.5

335

DRGA16

16

~2205

1850

≥940

420*220

150*150

10*M22*1.5

335

DRGA18

18

~2210

1850

≥940

420*220

150*150

10*M24*1.5

335

DRGA20

20

~2270

1850

≥940

420*220

150*150

10*M24*1.5

335

Noted:
1. The Trailer Axle track can be customized according to customer requirements
2. Axles can install ABS brake.
3. Axles can install Air brake chamber

Product Description

Strong one-piece or welded axle head, exceeding the industry standard for hardness and tensile strength.Stable and
reliable brake system with non-absestos brake linings.
1. Products Name: Trailer Axle Parts Standard Size 13T Axle
2. Axle Track: 1840mm
3.Axle Beam: Square 150mm/127mm Round 127mm
4. Product type:American,Germany and Europe type
5.Max.capacity you can choose:12T,13T,14T,15T,16T
6.Stud:10*M20*1.5
7.Material: Steel
8.Products Capacity Available: 13T/14T/16T/18T/20T

Detailed Photos

1. Axle Body Advantage: Axle tube is made of high-quality alloy steel with a special process, high strength and lightweight, andthe 2 ends of the tube body have good coaxially.2. Brake Advantage: Brake Shoes Holder 6 hole boring machine using 6 completed a one-time processing, high processing, high
position precision, asbestos free friction plate, in line with international environmental standards.
3. Quality Assurance:
1). The axle tube assured 1 year or 150000 km.
2). The brake assy and bearings assured 3 months.
3). The Hubs and Drums assured 6 months.

Certifications

Packaging & Shipping

FAQ

Q1. Are you a factory or trading company?  

A: Yes,we are factory, but not only factory, we also have sales team, own technical team, own after-sale workshop, can help buyers to decide which products are their suitable choice, and all your inquiry will be replyed within 24 hours.

Q2. Could you send me all your catalogues and price list?
A: Please inform me the items, size and packages you are interested in, so we can offer you the price list you need for your reference .

Q3. How does your factory do regarding quality control? 
A: Our factory has passed ISO/TS16949, CCC, DOT, ISO, CE Certificate.

Q4. What's your Delivery Time?
A: In generally, the delivery time is 10 days-15 days after receiving payment. For large quantity it will be checked  with production dept. We will make the delivery as soon as possible with the guaranted quality.

Q5. What is payment terms?
A: L/C, T/T, Western Union, and Alibaba Trade Assurance are all accepted, and if you have better idea, please feel free to share with us.

Q6. Which documents can you supply?
A: We usually provide our customers with Commercial Invoice, Price List, Packing List, Origin Certificate, Quality/Quantity Certificate, Beneficary's Certificate, B/L and others as your request.
You can connect with us through any contact information. Our personalized service person will respond to you within 24 hours.
We have a third-party certification agency, and each product will be certified by the relevant inspection department. Let every user buy with confidence. Once you cooperate, you become a lifelong friend! Welcome to my hometown, we have airport pick-up service and accommodation arrangements. Factory tour anytime! CZPT Truck welcomes you!

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(",").forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 24-Hour Tracking Service
Warranty: 12month
Type: Axle
Samples:
US$ 500/Piece
1 Piece(Min.Order)

|

Order Sample

The short shaft and brake hub are both forged with
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

axle

What is the role of axles in electric vehicles, and how do they differ from traditional axles?

Electric vehicles (EVs) have unique requirements when it comes to their drivetrain systems, including the axles. The role of axles in EVs is similar to traditional vehicles, but there are some key differences. Here's a detailed explanation of the role of axles in electric vehicles and how they differ from traditional axles:

Role of Axles in Electric Vehicles:

The primary role of axles in electric vehicles is to transmit torque from the electric motor(s) to the wheels, enabling vehicle propulsion. The axles connect the motor(s) to the wheels and provide support for the weight of the vehicle. Axles are responsible for transferring the rotational force generated by the electric motor(s) to the wheels, allowing the vehicle to move forward or backward.

In electric vehicles, the axles are an integral part of the drivetrain system, which typically includes an electric motor(s), power electronics, and a battery pack. The axles play a crucial role in ensuring efficient power transfer and delivering the desired performance and handling characteristics of the vehicle.

Differences from Traditional Axles:

While the fundamental role of axles in electric vehicles is the same as in traditional vehicles, there are some notable differences due to the unique characteristics of electric propulsion systems:

1. Integration with Electric Motors: In electric vehicles, the axles are often integrated with the electric motors. This means that the motor(s) and axle assembly are combined into a single unit, commonly referred to as an "electric axle" or "e-axle." This integration helps reduce the overall size and weight of the drivetrain system and simplifies installation in the vehicle.

2. High Torque Requirements: Electric motors generate high amounts of torque from the moment they start, providing instant acceleration. As a result, axles in electric vehicles need to handle higher torque loads compared to traditional axles. They are designed to withstand the torque output of the electric motor(s) and efficiently transmit it to the wheels.

3. Regenerative Braking: Electric vehicles often utilize regenerative braking, which converts the vehicle's kinetic energy into electrical energy and stores it in the battery. The axles in electric vehicles may incorporate systems or components that enable regenerative braking, such as sensors, controllers, and electric brake actuators.

4. Space Optimization: Electric vehicles often have different packaging requirements compared to traditional internal combustion engine vehicles. The axles in electric vehicles are designed to accommodate the space constraints and specific layout of the vehicle, considering the placement of the battery pack, electric motor(s), and other components.

5. Weight Considerations: Electric vehicles strive to optimize weight distribution to enhance efficiency and handling. Axles in electric vehicles may be designed with lightweight materials or innovative construction techniques to minimize weight while maintaining structural integrity and durability.

It's important to note that the specific design and characteristics of axles in electric vehicles can vary depending on the vehicle manufacturer, drivetrain configuration (e.g., front-wheel drive, rear-wheel drive, all-wheel drive), and other factors. Automotive manufacturers and suppliers continually innovate and develop new axle technologies to meet the evolving demands of electric vehicle propulsion systems.

axle

What is the difference between front and rear axles in a typical vehicle?

In a typical vehicle, there are distinct differences between the front and rear axles due to their respective roles and functions. Here are the key differences:

  1. Position:
  2. The main difference between the front and rear axles is their position in the vehicle. The front axle is located in the front of the vehicle, while the rear axle is positioned at the rear. This positioning is determined by the vehicle's drivetrain configuration.

  3. Steering:
  4. The front axle is responsible for steering the vehicle. It is connected to the steering system, allowing the driver to control the direction of the vehicle. The front axle typically includes components such as steering knuckles, tie rods, and steering linkages.

  5. Driving:
  6. The rear axle is primarily responsible for driving the vehicle's wheels. It receives power from the engine through the transmission or differential and transfers that power to the rear wheels. The rear axle may include components such as axle shafts, differential gears, and wheel hubs.

  7. Suspension:
  8. Both the front and rear axles play a role in the vehicle's suspension system, but their configurations and functions differ. The front axle typically incorporates suspension components such as control arms, struts, or independent suspension systems to provide better handling, stability, and ride comfort. The rear axle may have a solid axle setup or independent suspension depending on the vehicle's design.

  9. Load Distribution:
  10. The load distribution on the front and rear axles varies. In a typical vehicle, the front axle carries the weight of the engine, transmission, and a portion of the vehicle's weight due to the front-end weight bias. The rear axle bears the weight of the vehicle's occupants, cargo, and a portion of the vehicle's weight. This distribution helps maintain proper balance and stability during acceleration, braking, and cornering.

  11. Driving Characteristics:
  12. The differences between the front and rear axles can influence the vehicle's driving characteristics. The front axle's role in steering affects the vehicle's maneuverability and responsiveness. The rear axle's responsibility for driving the wheels affects traction, acceleration, and stability, particularly in rear-wheel drive or four-wheel drive vehicles.

It's important to note that the specific configurations and characteristics of front and rear axles can vary depending on the vehicle's make, model, and drivetrain system. Different types of vehicles, such as front-wheel drive, rear-wheel drive, or all-wheel drive, may have variations in axle design and functionality.

Understanding the differences between the front and rear axles is essential for proper maintenance, repairs, and modifications of the vehicle's drivetrain and suspension systems. If you have specific questions about your vehicle's axles, it's recommended to consult your vehicle's owner's manual or seek advice from qualified mechanics or automotive professionals.

axle

Can you explain the importance of axle alignment for vehicle stability and handling?

Axle alignment plays a crucial role in ensuring vehicle stability and handling characteristics. Proper alignment of the axles is essential for maintaining optimal tire contact with the road surface, minimizing tire wear, maximizing traction, and promoting safe and predictable handling. Here are the key reasons why axle alignment is important:

  1. Tire Wear and Longevity:
  2. Correct axle alignment helps distribute the vehicle's weight evenly across all four tires. When the axles are properly aligned, the tires wear evenly, reducing the risk of premature tire wear and extending their lifespan. Misaligned axles can cause uneven tire wear patterns, such as excessive wear on the inner or outer edges of the tires, leading to the need for premature tire replacement.

  3. Optimal Traction:
  4. Proper axle alignment ensures that the tires maintain optimal contact with the road surface. When the axles are aligned correctly, the tires can evenly distribute the driving forces, maximizing traction and grip. This is particularly important during acceleration, braking, and cornering, as proper alignment helps prevent tire slippage and improves overall vehicle stability.

  5. Steering Response and Stability:
  6. Axle alignment directly affects steering response and stability. When the axles are properly aligned, the vehicle responds predictably to driver inputs, providing precise and accurate steering control. Misaligned axles can lead to steering inconsistencies, such as pulling to one side or requiring constant correction, compromising vehicle stability and handling.

  7. Reduced Rolling Resistance:
  8. Proper axle alignment helps reduce rolling resistance, which is the force required to move the vehicle forward. When the axles are aligned correctly, the tires roll smoothly and effortlessly, minimizing energy loss due to friction. This can contribute to improved fuel efficiency and reduced operating costs.

  9. Vehicle Safety:
  10. Correct axle alignment is crucial for ensuring vehicle safety. Misaligned axles can affect the vehicle's stability, especially during emergency maneuvers or sudden lane changes. Proper alignment helps maintain the intended handling characteristics of the vehicle, reducing the risk of loss of control and improving overall safety.

To achieve proper axle alignment, several key parameters are considered, including camber, toe, and caster angles. Camber refers to the vertical tilt of the wheel when viewed from the front, toe refers to the angle of the wheels in relation to each other when viewed from above, and caster refers to the angle of the steering axis in relation to vertical when viewed from the side. These alignment angles are adjusted to meet the vehicle manufacturer's specifications and ensure optimal performance.

It's important to note that factors such as road conditions, driving habits, and vehicle modifications can affect axle alignment over time. Regular maintenance and periodic alignment checks are recommended to ensure that the axles remain properly aligned, promoting vehicle stability, handling, and safety.

China Standard Car Carrier Trailer Heavy Duty Shaft and Electr Brake Parts Truck Disc Brake Axle   dexter axleChina Standard Car Carrier Trailer Heavy Duty Shaft and Electr Brake Parts Truck Disc Brake Axle   dexter axle
editor by CX 2024-04-13